Multi-Objective PSO- and NPSO-based Algorithms for Robot Path Planning

نویسندگان

  • Ellips MASEHIAN
  • Davoud SEDIGHIZADEH
چکیده

69 Abstract—In this paper two novel Particle Swarm Optimization (PSO)-based algorithms are presented for robot path planning with respect to two objectives, the shortest and smoothest path criteria. The first algorithm is a hybrid of the PSO and the Probabilistic Roadmap (PRM) methods, in which the PSO serves as the global planner whereas the PRM performs the local planning task. The second algorithm is a combination of the New or Negative PSO (NPSO) and the PRM methods. Contrary to the basic PSO in which the best position of all particles up to the current iteration is used as a guide, the NPSO determines the most promising direction based on the negative of the worst particle position. The two objective functions are incorporated in the PSO equations, and the PSO and PRM are combined by adding good PSO particles as auxiliary nodes to the random nodes generated by the PRM. Both the PSO+PRM and NPSO+PRM algorithms are compared with the pure PRM method in path length and runtime. The results showed that the NPSO has a slight advantage over the PSO, and the generated paths are shorter and smoother than those of the PRM and are calculated in less time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

PSO-Based Path Planning Algorithm for Humanoid Robots Considering Safety

In this paper we introduce an improvement in the path planning algorithm for the humanoid soccer playing robot which uses Ferguson splines and PSO (Particle Swarm Optimization). The objective of the algorithm is to find a path through other playing robots to the ball, which should be as short as possible and also safe enough. Ferguson splines create preliminary paths using random generated para...

متن کامل

Robot Path Planning Using Cellular Automata and Genetic Algorithm

In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...

متن کامل

Novel Particle Swarm Optimization for Low Pass FIR Filter Design

This paper presents an optimal design of linear phase digital low pass finite impulse response (FIR) filter using Novel Particle Swarm Optimization (NPSO). NPSO is an improved particle swarm optimization (PSO) that proposes a new definition for the velocity vector and swarm updating and hence the solution quality is improved. The inertia weight has been modified in the PSO to enhance its search...

متن کامل

Meta-heuristic Algorithms for an Integrated Production-Distribution Planning Problem in a Multi-Objective Supply Chain

In today's globalization, an effective integration of production and distribution plans into a unified framework is crucial for attaining competitive advantage. This paper addresses an integrated multi-product and multi-time period production/distribution planning problem for a two-echelon supply chain subject to the real-world variables and constraints. It is assumed that all transportations a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011